Some Conjectures on Average of Fibonacci and Lucas Sequences

Daniel Yaqubia ${ }^{\text {a,* }}$, Amirali Fatehizadeh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science, University of Torbat e Jam, Iran.
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.

Abstract

The arithmetic mean of the first n Fibonacci numbers is not an integer for all n. However, for some values of n we can observe that it is an integer. In this paper we consider the sequence of integers n for that the average of the first n Fibonacci numbers is an integer. We prove some interesting properties and present two related conjectures.

Keywords: Fibonacci number, Lucas number, Pisano period, rank of appearance, restricted period.
2020 MSC: 13D45, 39B42.
© 2022 All rights reserved.

1. Introduction

The Fibonacci sequence $\left(F_{n}\right)_{n \geqslant 0}$ is defined by $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geqslant 2$, A000045 [9]. Fibonacci numbers have been extensively studied [3, 4]. Numerous fascinating properties are known as, for instance, their close relation to the binomial coefficient:

$$
F_{n+1}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i}
$$

The average of the first \mathfrak{n} terms of the Fibonacci sequence is not always an integer. For instance, for $\mathfrak{n}=3$ we have $\frac{1+1+2}{3}=\frac{4}{3}$, but for $n=1,2,24,48, \ldots$ are $\left(\frac{1}{n} \sum_{i=1}^{n} F_{i}\right)_{n \geqslant 1}$ integers.

In this paper, we explore the following question: Which terms of the sequence

$$
\begin{equation*}
A_{F}(n)=\left(\frac{1}{n} \sum_{i=1}^{n} F_{i}\right)_{n \geqslant 1} \tag{1.1}
\end{equation*}
$$

are integers?
We give a characterization for the values of n for that $A_{F}(n)$ is an integer. Moreover, we present a construction of finding infinitely many n that satisfy the given conditions. Further, we show that there are infinitely many n for that 6 is a divisor of the sum of the first n Fibonacci numbers.

Finally, we show that $A_{F}(p)$ is not an integer if p is an odd prime number.
Our work is based on the results in $[4,5,7,8,9,11]$.

[^0]2. Main results

First, we recall some definitions and important theorems [1, 2, 10]. A fundamental identity that we use in this paper is [4, Theorem 5.1]

$$
\begin{equation*}
\sum_{i=1}^{n} F_{i}=F_{n+2}-1 \tag{2.1}
\end{equation*}
$$

The Lucas numbers $\left(L_{n}\right)_{n \geqslant 0}$, are defined by the same recurrence relation as the Fibonacci numbers with different initial values (see A000032).

$$
\mathrm{L}_{0}=2, \quad \mathrm{~L}_{1}=1, \quad \mathrm{~L}_{n}=\mathrm{L}_{n-1}+\mathrm{L}_{n-2}, \quad \text { for } \quad n \geqslant 2
$$

The following relations between Fibonacci numbers and Lucas numbers can be found in [4]:

$$
\begin{align*}
\mathrm{F}_{4 \mathrm{k}+1}-1 & =\mathrm{F}_{2 \mathrm{k}} \mathrm{~L}_{2 \mathrm{k}+1} \tag{2.2}\\
\mathrm{~F}_{4 \mathrm{k}+2}-1 & =\mathrm{F}_{2 \mathrm{k}} \mathrm{~L}_{2 \mathrm{k}+2} \tag{2.3}\\
\mathrm{~F}_{4 \mathrm{k}+3}-1 & =\mathrm{F}_{2 \mathrm{k}+2} \mathrm{~L}_{2 \mathrm{k}+1} \tag{2.4}\\
\mathrm{~F}_{2 \mathrm{k}} & =\mathrm{F}_{\mathrm{k}} \mathrm{~L}_{2 \mathrm{k}} \tag{2.5}
\end{align*}
$$

An integer a is called a quadratic residue modulo p (with $p>2$) if $p \nmid a$ and there exists an integer b such that $a \equiv b^{2}(\bmod p)$. Otherwise, it is called a non-quadratic residue modulo p.

Let p be an odd prime number. The Legendre symbol is a function of a and p defined as

$$
\left(\frac{a}{p}\right)= \begin{cases}+1, & \text { if } a \text { is a quadratic residue modulo } p \text { and } a \not \equiv 0(\bmod p) \\ -1, & \text { if } a \text { is a non-quadratic residue modulo } p \\ 0, & \text { if } a \equiv 0(\bmod p)\end{cases}
$$

We note that for a prime number p the Legendre symbol, $\left(\frac{5}{p}\right)$, is equal to

$$
\left(\frac{5}{p}\right)= \begin{cases}+1, & \text { if } p \equiv \pm 1(\bmod 5) \\ 0, & \text { if } p \equiv 0(\bmod 5) \\ -1, & \text { if } p \equiv \pm 2(\bmod 5)\end{cases}
$$

Consider the sequence of the Fibonacci numbers modulo 8:

$$
0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5, \ldots
$$

We observe that the reduced sequence is periodic.
Lagrange [5] showed that this property is true in general, i.e., that the Fibonacci sequence is periodic modulo m for any positive integers $\mathrm{m}>1$.

Definition 2.1. For a given positive integer m, we call the least integer such that $\left(F_{n}, F_{n+1}\right) \equiv(0,1)(\bmod$ $\mathfrak{m})$ the (Pisano) period of the Fibonacci sequence modulo m and denote it by $\pi(m)$.

The first few values of $\pi(n)$ are given as the sequence A001175 in [9].
We recall as a lemma the fixed point theorem of Fulton and Morris [2].
Lemma 2.2 (Fixed Point Theorem [2]). Let m be a positive integer greater than 1 . Then $\pi(m)=m$ if and only if $m=(24) 5^{\lambda-1}$ for some $\lambda>0$.

For instance, with $\mathrm{m}=8$ we have $\pi(8)=12$ and $\alpha(8)=6$. The 12 terms in the period form two sets of 6 terms. The terms of the second half are 5 times the corresponding terms in the first half (mod 8). For the Lucas sequence $F_{n}=U_{n}(P, Q)$; Robinson [8], we have $t \equiv F_{\alpha(m)-1}(-Q)(\bmod m)$ is the multiplier between consecutive parts of length $\alpha(m)$ of the period. If the $(\bmod m)$ order of t is r then $\pi(m)=r \alpha(m)$. Here $\mathrm{F}_{\mathrm{n}}=\mathrm{U}_{\mathrm{n}}(1,-1),(\mathrm{P}, \mathrm{Q})=(1,-1), \alpha(8)=6, \mathrm{t}=5, \mathrm{r}=2$; thus $\pi(8)=2 \cdot 6=12$; Robinson [8]. The 12 terms in the period form two sets of 6 terms. The terms of the second half are 5 times the corresponding terms in the first half (modulo 8). The next definition is

Definition 2.3. For a given positive integer, we call the least integer such that $\left(F_{n}, F_{n+1}\right) \equiv \sigma(0,1)(\bmod$ m) for some positive integer σ the restricted period of the Fibonacci sequence modulo m and denote it by $\alpha(m)$.

Robinson [8] showed the following theorems.
Theorem 2.4. i) $m \mid F_{n}$ if and only if $\alpha(m) \mid n$, and
ii) $m \mid F_{n}$ and $m \mid F_{n+1}-1$ if and only if $\pi(m) \mid n$.

Theorem 2.5. If p is a prime, then
i) $\alpha(p) \left\lvert\,\left(p-\left(\frac{5}{p}\right)\right)\right.$,
ii) if $p \equiv \pm 1(\bmod 5)$, then $\pi(p) \mid(p-1)$, and
iii) if $p \equiv \pm 2(\bmod 5)$, then $\pi(p) \mid 2(p+1)$.

The exponent of the multiplier of the Fibonacci sequence modulo $p, t \equiv F_{\alpha(p)-1}(\bmod p)$ is $\frac{\pi(p)}{\alpha(p)}$ and can only take the values 1,2 and 4 .

For a positive integer n and a prime p, the p-adic valuation of $n, v_{p}(n)$, is the exponent of the highest power of p that divides n.

Legendre's classical formula for the p-adic valuation of the factorials is well known:

$$
v_{p}(n!)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{p^{i}}\right\rfloor
$$

We recall Lengyel's lemma [6] about the p-adic evaluation of Fibonacci numbers in cases $p=2,3$ and 5 .
Lemma 2.6 ([6], Lemmas 1 and 2). For all $n \geqslant 0$, we have $\nu_{5}\left(F_{n}\right)=v_{5}(n)$. On the other hand,

$$
v_{2}\left(F_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2(\bmod 3) \\ 1, & \text { if } n \equiv 3(\bmod 6) \\ 1, & \text { if } n \equiv 6(\bmod 12) \\ v_{2}(n)+2, & \text { if } n \equiv 0(\bmod 12)\end{cases}
$$

and

$$
v_{3}\left(F_{n}\right)= \begin{cases}0, & \text { if } n \neq 0(\bmod 4) \\ v_{3}(n)+1 & \text { if } n \equiv 0(\bmod 4)\end{cases}
$$

Acknowledgment
If you'd like to thank anyone, place your comments here.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1998. 2
[2] J. Fulton and W. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arith. 16 (1969), 105-110. 2, 2, 2.2
[3] D. E. Knuth, The Art of Computer Programming, Addison-Wesley, 1968. 1
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, New York, NY: John Wiley and Sons, 2001. 1, 2,2
[5] J. L. Lagrange Serret, Oeuvres de Lagrange, Gauthier-Villars, 1882. 1, 2
[6] T. Lengyel, The order of Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995), 234-239. 2, 2.6
[7] P. Ribenboim, The Little Book of Big Primes, Springer, 1991. 1
[8] D. W. Robinson, The Fibonacci Matrix Modulo m, Fibonacci Quart. 1 (1963), 29-36. 1, 2, 2
[9] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 2021. 1, 2
[10] L. Somer and M. Krizek, Fixed points and upper bounds for the rank of appearance in Lucas sequences, Fibonacci Quart. 51 (2013), 291-306. 2
[11] D. D. Wall Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525-532. 1

[^0]: *Corresponding author
 Email addresses: Daniel_yaqubi@yahoo.es (Daniel Yaqubi), mirali.fatehizadeh@gmail.com (Amirali Fatehizadeh)
 Received: November 3, 2022 Revised: November 10, 2022 Accepted: November 21, 2022

